Fuzzy c-Means Clustering, Entropy Maximization, and Deterministic and Simulated Annealing

نویسنده

  • Makoto Yasuda
چکیده

Many engineering problems can be formulated as optimization problems, and the deterministic annealing (DA) method [20] is known as an effective optimization method for such problems. DA is a deterministic variant of simulated annealing (SA) [1, 10]. The DA characterizes the minimization problem of cost functions as the minimization of Helmholtz free energywhich depends on a (pseudo) temperature, and tracks the minimum of free energy while decreasing temperature and thus it can deterministically optimize the function at a given temperature [20]. Hence, the DA is more efficient than the SA, but does not guarantee a global optimal solution. The study on the DA in [20] addressed avoidance of the poor local minima of cost function of data clustering. Then it was extensively applied to various subjects such as combinational optimization problems [21], vector quantization [4], classifier design [13], pairwise data clustering [9] and so on.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy Entropy Based Fuzzy c-Means Clustering with Deterministic and Simulated Annealing Methods

This article explains how to apply the deterministic annealing (DA) and simulated annealing (SA) methods to fuzzy entropy based fuzzy c-means clustering. By regularizing the fuzzy c-means method with fuzzy entropy, a membership function similar to the Fermi-Dirac distribution function, well known in statistical mechanics, is obtained, and, while optimizing its parameters by SA, the minimum of t...

متن کامل

On Utilization of K-Means for Determination of q-Parameter for Tsallis-Entropy-Maximized-FCM

In this paper, we consider a fuzzy c-means (FCM) clustering algorithm combined with the deterministic annealing method and the Tsallis entropy maximization. The Tsallis entropy is a q-parameter extension of the Shannon entropy. By maximizing the Tsallis entropy within the framework of FCM, membership functions similar to statistical mechanical distribution functions can be derived. One of the m...

متن کامل

Deterministic and Simulated Annealing Approach to Fuzzy C-means Clustering

This paper explains the approximation of a membership function obtained by entropy regularization of the fuzzy c-means (FCM) method. By regularizing FCM with fuzzy entropy, a membership function similar to the Fermi-Dirac distribution function is obtained. We propose a new clustering method, in which the minimum of the Helmholtz free energy for FCM is searched by deterministic annealing (DA), w...

متن کامل

An unsupervised clustering method using the entropy minimization

We address the problem of unsupervised clustering using a Bayesian framework. The entropy is considered to define a prior and enables us to overcome the problem of defining a priori the number of clusters and an initialization of their centers. A deterministic algorithm derived from the standard k-means algorithm is proposed and compared with simulated annealing algorithms. The robustness of th...

متن کامل

Deterministic Annealing Variant of the EM Algorithm

We present a deterministic annealing variant of the EM algorithm for maximum likelihood parameter estimation problems. In our approach, the EM process is reformulated as the problem of minimizing the thermodynamic free energy by using the principle of maximum entropy and statistical mechanics analogy. Unlike simulated annealing approaches, this minimization is deterministically performed. Moreo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014